CONTRIBUTION TO THE THEORY OF THERMAL INTERACTION
BETWEEN THE POWDER COMBUSTION ZONE
AND THE POWDER-METAL CONTACT

S. S. Novikov and Yu. S. Ryazantsev

A method is proposed in [1] for studying experimentallythe conditions for powder extinction, in which
thermal interaction between the combustion front and the metal-powder contact is used for creating extinc-
tion conditions in the combustion zone (method of "freezing™ the combustion zone). Cylindrical powder
samples with Plexiglas~coated lateral surfaces, placed on'a massive copper plate, were burned in the
experiment. The powder was ignited at the free end face of the sample. Since at the moment of ignition
the distance between the combustion zone and the surface of the metal-powder contact is much greater
than the characteristic thickness of the thermal layer in the powder, the cooling effect of the metal (high
thermal conductivity) has almost no effect on the combustion process during the initial burning phase, so
that the burning process becomes almost stationary shortly after ignition. As the combustion front ap-
proaches the metal-powder contact, the influence of the (high) thermal conductivity of the meial on the
conditions in the combustion zone continues to increase. Heat removal from the combustion zone increases,
the temperature gradient at the surface of the k-phase increases, the combustion conditions become non-
stationary, the burning rate changes, and extinction occurs at a certain distance from the contact. On the
copper plate there remains a layer of unburned powder, whose thickness depends on the initial temperature
of the powder and on the gas pressure within the volume in which combustion occurs, In a series of ex-
periments performed with powder samples with the same initial temperature, it was established that the
pressure dependence of the thickness of the unburned powder layer can be described by the formula

Ink=4 —-~vlnp 1)

where h is the thickness of the powder residue, p is the pressure, A is an experimental constant, and v is
an experimental constant equal to the exponent in the power-law relation between the stationary burning
rate and pressure.

The theory underlying the empirical relation (1) is proposed below. The experimental conditions are
such that the propagation of the combustion front over the powder can be safely considered to be one-dimen-
sional. An idealized picture of the mutual position of the combustion front and the metal-powder contact is
shown schematically in the figure, The combustion front moves from the direction of positive values of x.
The surface of the metal-powder contact coincides with the plane x=0 in such
a way that the region x<0 is occupied by the metal, and the region 0 <x<xq
by the powder. The heat conductivity of the metal is assumed to be large
(infinite in the limiting case) compared to that of the powder. In the limiting
case, the temperature of the contact surface may be assumed to have a con-

stant value equal to that of the initial temperature Ty. (To justify this as-
\ sumption, the volume of the metal disk must be sufficiently large; other-
wise, the total heating of the disk should be taken into account.)
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Fig We formulate the problem of unsteady burning of a flat layer of pow-

der. The variation of the powder temperature T(x, t) is described by the
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where x, t are a coordinate and time, respectively; w is the thermal conductivity coefficient; and xg (t) is
the coordinate of the powder surface which varies due to the propagation of the combustion front. Initial
and boundary conditions must be obtained for Eq. (2). In virtue of the adopted hypothesis about a high
thermal conductivity and high integral specific heat of the metal disk, the condition of constant temperature

z=0,T=T, (3)

must be fulfilled at any moment of time at the metal-powder contact.

The boundary condition at the burning surface x=xg(t) depends on the type of combustion model adopt-
ed.

We assume that powder combustion is described by Ya. B. Zel'dovich's theory [2], and also that the
temperature at the burning powder surface remains constant during the entire combustion process

z=x,(t), T=Ty. (4)

The velocity of motion of the burning surface is equal to the burning rate u(t);

—— == U s (5)

As in [2], we assume that the burning rate under nonstationary conditions depends on the pressure
and temperature gradient at the burning surface inside the powder and that this dependence is the same
for nonstationary and stationary conditions.

With this assumption, the derivation of an explicit expression for the nonstationary burning rate
ulg, p) must be based on a stationary dependence of the burning rate on the pressure and initial tempera-
ture (e.g., an empirical dependence) and also on a nonstationary relation between the burning rate and the
temperature gradient at the burning surface. An empirical dependence of the burning rate of powder on
pressure and initial temperature usually can be represented in the form

ug (p, To) = H(Tgymp’, ©)

where ug is the burning rate of powder under stationary conditions, T, is the initial temperature, p is the
pressure, v and u; are experimental constants, and f(T,) is a known function which may be given, for
example, in graphical form,

The temperature gradient at the burning surface under stationary burning conditions is related to the
burning rate by the formula

il

0=(Z) =210, o

b
After eliminating T, in (6) and (7), we get a dependence of the burning rate on the temperature gra-
dient at the burning surface and on pressure, which holds also for nonstationary conditions

u(e, p)=(Ts — ’g) wp'. ®)

From Egs. (5) and (8) it follows that under nonstationary conditions at constant pressure, the time
dependence of the displacement rate of the moving boundary, xg, is defined by the dependence of the tem-
perature gradient ¢ at the burning surfuce of the powder.

The temperature gradient at the burning surface varies during the combustion process but cannot
exceed a certain critical value ¢* which represents the maximum value of the gradient observed under
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stationary burning conditions. By using the condition of maximum, i.e., by differentiating (7) over T,
with allowance for Eq. (6), and equating the results to zero, we arrive at the equation

dinf(To)_ 14 9

dT, Te—To

The solution to Eq. (9), which is Ty=T¢*, defines the minimum initial temperature at which a steady
burning regime can still exist. Since the temperature gradient at the burning surface reaches its maximum
value in this regime, the critical gradient ¢* can be obtained from Egs. (6), (7) by substitution of Ty = Ty*:

gt = Y1) (1, — 1), (10)

Combustion ceases at the moment where the temperature gradient at the burning surface reaches the
critical value ¢*. Consequently, the condition for extinction has the form

(%) Zw*zlﬂ:—v—f (To) (Ts —Te® « 11)

In order to finally formulate the extinction problem, it is necessary that an initial condition, which
describes the temperature distribution in the powder at the initial moment of time, be introduced to Eq.
(2), the boundary conditions (3), (4), the Egs. (5), (8) (which define the law that governs the motion of the
moving boundary), and to the condition for extinction.

For ideal formulation of the problem, it may be assumed that the combustion front propagates from
infinity. Such a propagation is accompanied by a heat wave which moves in front of the combustion front,
and temperature distribution of which is described by the so~called Michelson temperature profile

T (2) = To -+ (T — To) exp ”L(?M__"s) . 12)
d

It is obvious that an infinite powder layer (0 < x <— ) burningata finite rate will burn indefinitely, in
which case the problem loses its sense. We shall therefore replace the ideal formulation of the problem
by an approximate one. We assume that at 2 moment of time t=0, the powder layer had a finite thickness
1 =x4(0), that the temperature distribution in the powder was of the form (12), and that the surface tempera-
ture of the metal-powder contact was not T but rather Ty*, described by (12}, i.e.,

#=0, T(0)="To+ (T, —To) exp 0 (13)

10, @ (0)=1, T(z,O):T(,Jr(TSATO)expW%fl. (14)

From formula (14), it may be seen that by increasingl, the difference between the temperatures T,
and T0+ can be reduced, thereby increasing the accuracy of the adopted assumption concerning the value
of the temperature at the surface of the metal-powder contact.

With the assumptions introduced, the problem of a plane powder layer burning on a metallic sub-
strate reduces to the solution of Eq. (2) with the boundary conditions (4) and (14), and the initial condition
(13) for a given law of motion of the moving boundary, described by Egs. (5), (8). A solution to this prob-
lem should permit determination of the temperature profile in the powder, the position of the burning sur-
face, and the burning rate at any moment of time down to the moment of extinction, where the temperature
gradient at the burning surface becomes critical. This will also yield the thickness h of the unburned pow-
der layer.

The problem formulated is a complex nonlinear one which does not lend itself to analytical solution.
A relation between the thickness of the powder residue and pressure can be derived without obtaining an
analytical solution to the problem if use is made of similarity and dimensionality techniques. We write
the problem (2), (4), (14), (13), (5), (8), (11) in dimensionless form
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with the aid of the following dimensionless combinations:

= ek A b 3
e
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It should be noted that the dimensionless combinations do not contain the pressure.

It is evidentthat in the general case the dimensionless temperature distribution obtained from (15)-
(17) will depend on the dimensionless combinations

=0 ¢ 1 Lk a). 18)

At the same time the dimensionless thickness 0 of the unburned powder residue, of interest to us,
should be independent of the dimensionless variables £, 7, so that

8= (L, k a) 19)

Moreover, from the conditions of the problem, it follows that the dependence of ¢ and § on L may be
neglected, since for a properly performed experiment (sufficiently large initial thickness of the powder
layer), L has no influence onthe experimental results. Hence, one may write

8= 0(k a) (20)

The dimensionless parameters k, a; depend on the initial temperature T, and are independent of pres-
sure p. This means that in experiments aimed at studying extinction, the parameters k, a; remain con-
stant when the initial temperature is kept constant {only the pressure is varied). This is why in a series
of tests in which the pressure is varied while the temperature is kept at the initial level, the dimension-
less thickness 6 of the unburned powder layer, as defined by Eq. (20), will remain constant;

8 = const = C, (21)

From (21), it is easy to establish a relation between the thickness h of the powder layer and the
pressure. Making use of the definition of the dimensionless parameter 8, together with Eq. (6), from (21)
we get

he %0 lph=A—vl A=In__"C . 99
o vinp "fmw) (22)

It can be seen that the relation (22) obtained correlates well with the empirical relation (1). Tt can be
shown that consideration of the substrate's finite thermal conductivity does not change Eq. (22).

It is noteworthy that the analysis performed makes it possible to obtain solely a relation between the
thickness of the powder residue and pressure. A relation between the thickness of the powder residue and
the initial temperature can be obtained apparently only from the actual solution of the problem formulated.
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